ArduChess/Board.h

294 lines
7.6 KiB
C

#ifndef __BOARD_H_INC
#define __BOARD_H_INC
#include "Types.h"
#include "Panic.h"
#include "Move.h"
#define BOARD_DEFAULT_VALUE { \
W_ROOK, W_KNGT, W_BSHP, W_QUEN, W_KING, W_BSHP, W_KNGT, W_ROOK, 0, 0, 0, 0, 0, 0, 0, 0, \
W_PAWN, W_PAWN, W_PAWN, W_PAWN, W_PAWN, W_PAWN, W_PAWN, W_PAWN, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
B_PAWN, B_PAWN, B_PAWN, B_PAWN, B_PAWN, B_PAWN, B_PAWN, B_PAWN, 0, 0, 0, 0, 0, 0, 0, 0, \
B_ROOK, B_KNGT, B_BSHP, B_QUEN, B_KING, B_BSHP, B_KNGT, B_ROOK, 0, 0, 0, 0, 0, 0, 0, 0, \
};
// 0x88-fill definitions
#define PTR_SIDE_AND_CASTLERIGHT 0x08 //byte (1=side, 2,4=white castle, 8,16=black)
// CAN FILL 0x09
#define PTR_W_KING 0x0A // byte (points to index or maybe 64-arr index)
#define PTR_B_KING 0x0B // (PTR_W_KING | COLOR or PTR_W_KING + COLOR)
#define PTR_ZOBRIST 0x0C // 4 bytes
// 0x0D
// 0x0E
// 0x0F
#define PTR_ENPASSANT 0x18
#define PTR_REVMOV 0x19
// free space
#define PTR_UNMOVE_START 0x28
#define PTR_UNMOVE_LAST 0x7F
byte field[128];
byte PTR_UNMOVE;
const byte field_default_value[] PROGMEM = BOARD_DEFAULT_VALUE;
void board_init() {
for(int i = 0; i < 128; i++) {
field[i] = pgm_read_byte_near(field_default_value + i);
}
PTR_UNMOVE = PTR_UNMOVE_START;
field[PTR_SIDE_AND_CASTLERIGHT] = 0b11110; // all castle rights allowed, white to move
field[PTR_W_KING] = 0x04; // e1
field[PTR_B_KING] = 0x74; // e8
long* zob = (long*)&field[PTR_ZOBRIST];
*zob = 0xDEADBEEF;
}
struct Unmove {
byte sq_from; // 0b(1kingside_castle?)(3rank)(1queenside_castle?)(3file)
byte sq_to; // 0b(1promoted?)(3rank)(1ep_capture?)(3file)
byte captured; // 0b(4enpassantinfo)(1color)(3piecetype)
byte revmov; // 8bit integer
};
bool black_moving() {
return field[PTR_SIDE_AND_CASTLERIGHT] & 0x1;
}
unsigned long get_zobrist() {
long* addr = (long*) &field[PTR_ZOBRIST];
return *addr;
}
void reset_unmake_stack() {
PTR_UNMOVE = PTR_UNMOVE_START;
}
void next_unmove() {
PTR_UNMOVE++;
if(PTR_UNMOVE > PTR_UNMOVE_LAST) {
panic(F("Unmove stack overflow"));
}
if(!(PTR_UNMOVE & 0x8)) {
PTR_UNMOVE += 0x8;
}
}
void prev_unmove() {
PTR_UNMOVE--;
if(PTR_UNMOVE < PTR_UNMOVE_START) {
panic(F("Unmaking from empty stack"));
}
if(!(PTR_UNMOVE & 0x8)) {
PTR_UNMOVE -= 0x8;
}
}
void store_unmove(Unmove u) {
byte *ub = (byte*) &u;
for(byte i = 0; i < sizeof(u); i++) {
field[PTR_UNMOVE] = ub[i];
next_unmove();
}
}
Unmove read_unmove() {
Unmove u;
byte* ptr = (byte*) &u;
for(int i = sizeof(u) - 1; i >= 0; i--) {
prev_unmove();
ptr[i] = field[PTR_UNMOVE];
#ifdef _ACF_CLEAR_UNMOVE
field[PTR_UNMOVE] = 0;
#endif
}
return u;
}
void print() {
Serial.println(F("BOARD:"));
for(char i = 7; i >= 0; i--) {
for(byte j = 0; j < 16; j++) {
if(j == 8)
Serial.print(F("| "));
Serial.print(field[i*16 + j], HEX);
Serial.print(F(" "));
}
Serial.println();
}
}
void make(Move m) {
// TODO zobrist?
// fill unmove struct with basic data
Unmove u;
u.revmov = field[PTR_REVMOV];
u.captured = field[m.sq_to] | (field[PTR_ENPASSANT] << 4);
u.sq_from = m.sq_from;
u.sq_to = m.sq_to;
byte piece_type = field[m.sq_from] & 0x7;
byte color = black_moving();
if(field[m.sq_to] || piece_type == W_PAWN) {
field[PTR_REVMOV] = 0;
} else {
field[PTR_REVMOV]++;
}
// Calculate the move 'amount' (unique signature for dx,dy)
int sq_diff = (int)m.sq_to - (int)m.sq_from;
int sq_diff_abs = abs(sq_diff);
// TODO test the castling code more extensively
// Handle castling
if(piece_type == W_KING && sq_diff_abs == 2) {
// We are castling! After all, a king cannot move
// more than one position except when castling.
// Since we don't care about legality; just do it
byte castle_source = (color ? 0x70 : 0x0);
if(sq_diff == 2) {
castle_source += 0x7;
}
byte castle_target = m.sq_from + (sq_diff/2);
field[castle_target] = field[castle_source];
field[castle_source] = P_EMPTY;
}
// Handle castling rights
// First store the current rights in the unmove
byte our_rights = field[PTR_SIDE_AND_CASTLERIGHT] >> (color ? 3 : 1);
if(our_rights & 0b10) // kingside allowed
u.sq_from |= 0x80;
if(our_rights & 0b01) // queenside allowed
u.sq_from |= 0x08;
// We are doing the simple way:
// unset it any time a move is made from the original position.
if(m.sq_from == 0x00) // white queenside rook
field[PTR_SIDE_AND_CASTLERIGHT] &= ~0b00010;
else if(m.sq_from == 0x07) // white kingside rook
field[PTR_SIDE_AND_CASTLERIGHT] &= ~0b00100;
else if(m.sq_from == 0x04) // white king
field[PTR_SIDE_AND_CASTLERIGHT] &= ~0b00110;
else if(m.sq_from == 0x70) // black queenside rook
field[PTR_SIDE_AND_CASTLERIGHT] &= ~0b01000;
else if(m.sq_from == 0x77) // black kingside rook
field[PTR_SIDE_AND_CASTLERIGHT] &= ~0b10000;
else if(m.sq_from == 0x74) // black king
field[PTR_SIDE_AND_CASTLERIGHT] &= ~0b11000;
// TODO: test enpassant code more than basics
// handle enpassant capture
if(
field[PTR_ENPASSANT] &&
piece_type == W_PAWN &&
(m.sq_to & 0x7) == (field[PTR_ENPASSANT] & 0x7) &&
(m.sq_to & 0x70) == (color ? 0x20 : 0x50)
) {
// all EP-conditions are met
// therefore, delete the EP-vurnerable pawn
byte ep_field = m.sq_to + (color ? 16 : -16);
field[ep_field] = P_EMPTY;
// also put information that we did an EP-capture
u.sq_to |= 0x08;
}
// handle enpassant setup (double pawn move)
if(
piece_type == W_PAWN &&
sq_diff_abs == 32
) {
// we are doing a pawn double-move.
// therefore, it allows enpassant in the next move.
field[PTR_ENPASSANT] = 0b1000 | (m.sq_from & 0x7);
} else {
// no enpassant in the next turn.
field[PTR_ENPASSANT] = 0;
}
// are we promoting?
byte new_val = m.pc_prom & 0b1111;
if(m.pc_prom != P_EMPTY) {
// promoting; indicate this in the sq_to byte in unmove.
field[m.sq_to] = m.pc_prom;
u.sq_to |= 0x80;
} else {
// not promoting; so keep the same piece type
field[m.sq_to] = field[m.sq_from];
}
// then delete the original copy.
field[m.sq_from] = P_EMPTY;
// Switch sides
field[PTR_SIDE_AND_CASTLERIGHT] ^= 0x01;
store_unmove(u);
}
void unmake() {
Unmove u = read_unmove();
field[PTR_REVMOV] = u.revmov;
byte sq_from = u.sq_from & 0x77;
byte sq_to = u.sq_to & 0x77;
byte prom_ep_capt = u.sq_to & 0x88;
if(prom_ep_capt == 0) {
// regular move
field[sq_from] = field[sq_to];
} else if (prom_ep_capt == 0x80) {
// piece was promoted
// so the source is a pawn
field[sq_from] = W_PAWN | (field[sq_to] & 0b1000);
} else if (prom_ep_capt == 0x08) {
// we did an enpassant capture
byte ep_sq = (sq_to & 0x07) | (sq_from & 0x70);
field[ep_sq] = W_PAWN | black_moving() << 3;
// also undo the regular move
field[sq_from] = field[sq_to];
}
byte castleright_offset = 3 - 2*black_moving();
if(u.sq_from & 0x80) {
// restore king side castling rights
field[PTR_SIDE_AND_CASTLERIGHT] |= 0b10 << castleright_offset;
}
if(u.sq_from & 0x08) {
field[PTR_SIDE_AND_CASTLERIGHT] |= 0b01 << castleright_offset;
}
int sq_diff = (int)sq_to - (int)sq_from;
int sq_diff_abs = abs(sq_diff);
if((field[sq_from] & 0x7) == W_KING && sq_diff_abs == 2) {
// we castled
byte castle_source = 0x70*!black_moving();
if(sq_diff == 2) {
castle_source += 0x7;
}
byte castle_target = sq_from + (sq_diff/2);
// move rook back to original position
field[castle_source] = field[castle_target];
// and clear where it was put
field[castle_target] = P_EMPTY;
}
field[sq_to] = u.captured & 0b1111;
field[PTR_SIDE_AND_CASTLERIGHT] ^= 0x01;
field[PTR_ENPASSANT] = u.captured >> 4;
}
#endif